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Abstract
We describe a 3-dimensional adaptive mesh refinement Poisson solver. The complete
program consists of about 3,500 lines of Titanium code and runs on both shared-memory
and distributed-memory architectures. This paper focuses on the algorithm and on our
experiences in writing AMR and tuning its performance.

1 Introduction

This paper is a case study in the use of an experimental programming language in
implementing a useful numerical method—adaptive mesh refinement (AMR) for solving
Poisson’s equation, Ap = p, over the cube Q = [0,1]3. Poisson’s equation and its close
relatives arise in many applications such as fluid mechanics, gravitation, heat flow, and
electromagnetics. Poisson solvers are also used as components of some other PDE solvers.
The authors have been involved in the design and implementation of the Titanium language,
a dialect of Java intended for use in parallel computation [9]. Here, we attempt to show
that Titanium is well-suited to the implementation of an AMR Poisson solver.

Most practical techniques for solving Poisson’s equation discretize the problem domain
Q into cells and take as input the value of p at each cell plus boundary conditions. The
output is the approximate value of ¢ at each cell.

To use a finite difference method, with cell-centered values, on a uniform grid with mesh
spacing h, we write
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where u = (1,1,1). The Laplacian may then be approximated by
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where €’ is the unit vector in the s direction.

A naive relaxation method might only communicate information between adjacent
cells. Multigrid relazation uses several levels of grids at different resolutions with each
grid covering the entire problem domain. By communicating information both within a
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level and across levels, multigrid is able to converge in time linear in the number of cells
(see, for example, Demmel’s text [6]).

AMRPoisson is an extension of the multigrid algorithm for solving Poisson’s equation
on adaptively refined grids [8]. AMR allows grids at high levels of resolution to cover only
a subset of the problem domain. The subset of interest for a given level is represented by
a set of rectangular patches.

In our implementation of AMRPoisson, parallelism is mainly achieved by relaxing
simultaneously on all patches at a given refinement level. For large enough patches,
communication and synchronization overheads are small.

Titanium is a language and system for high-performance parallel scientific computing.
Titanium uses Java as its base, thereby leveraging the advantages of that language and
allowing us to focus attention on parallel-computing issues. The main additions to Java are
immutable classes, multi-dimensional arrays, an explicitly parallel “single program multiple
data” (SPMD) model of computation with a global address space, and region-based memory
management (further described by Aiken and Gay [1]). For portability, the Titanium
compiler outputs C code.

The main goal in the design of the Titanium language and compiler is performance.
Although the compiler is actively under development, the performance of several Titanium
programs is already satisfactory. In some cases, it exceeds the performance of hand-coded
C or FORTRAN. Typical performance is 0.7x to 0.9x that of hand-coded C or FORTRAN.
We will present our latest performance benchmarks at the conference.

A significant fraction of the AMRPoisson code is dedicated to computing boundary
values at the interfaces between coarse and fine boundaries. This computation, although
not onerous, is complex. Titanium’s design aided us greatly in expressing this part of the
calculation.

The next two sections describe the AMRPoisson algorithm and its implementation in
Titanium. We then present performance results.

2 AMRPoisson

To extend multigrid to adaptively refined meshes, we need a multilevel discretization of
Poisson’s equation. First, we introduce some notation.

I = alevel number, [ € {0,...,lmaz}; Imaz is finest
k! = the mesh spacing for level
Q! = a disjoint union of rectangular patches for level I
P = the projection operator from Q! to Q!
R = the refining operator from Q! to Q!*!

The refinement ratio is the ratio h?—frl and is typically a power of two. For simplicity we
require that R(P(Q21)) = Q! and that cells at level I may only border cells at levels
I—1,1,0orl+1. Also, Q° must cover the entire problem domain.

We let ¢' and p' be cell-centered; they are defined on Q! — P(Q*!). We are using a
residual/correction formulation so we also need to store a residual r! and a correction e!;
they are defined on all of Q.



2.1 Discretization
We want a discretization of Poisson’s equation of the form

L¢! ¢!, ¢™t1) = ol on @' — P(Q™)

Away from the [/l + 1 and [/l — 1 boundaries, it should reduce to the uniform grid
discretization defined above.

We compute L' in two steps. First, we calculate LYF! (¢!, ¢'=1) on Q!, which is an
approximation to L' computed under the assumption that we have information from the
fine grid Q1. (“NF” stands for “no fine.”) Away from the boundary with Q1 LNF! is
equal to L!. Second, in an operation called refluzing, we correct the values of LV at the
cells adjacent to the I /1 + 1 boundary.

2.1.1 Computing LV To compute LN we want to reduce the problem to the solved
case of a rectangle with uniform mesh spacing. We assume no information from the next
finer level (if any), so we extend ¢! to P(Q*1) and fill it with some harmless value that
will not cause roundoff problems. In the end we only care about L! on Q! — P(Q‘t1), and
the later refluxing at the [ /I + 1 boundary is sufficient to erase any contribution made by
the “harmless value” we have chosen.

We logically expand each rectangle in Q (a disjoint union of rectangles) with a layer of
ghost cells. Each ghost cell is filled with a value for ¢ thus:

e If the ghost cell is exterior to the problem domain, use the physical boundary

conditions.

e If the ghost cell is covered by €, copy the value from ¢'.

e Otherwise, the ghost cell must be covered by Q~!. We interpolate a value using
a combination of ¢! and ¢!~! values. If one or more of the coarse cells required
for interpolation is covered by a fine grid, then we must construct an appropriately
accurate value for that coarse cell from the fine grid values.
We are now able to compute LVF on each rectangle of interest using the simple operator
for uniform mesh spacing.

2.1.2 Refluxing LV can be written in the following form:

3
B 1
LNF,l(¢l’¢l l)i — Z ﬁ(Fii%es _ Fis_%es) ’

s=1

where the flux F'¢ is defined as
F? _1
itle’ = E(¢i+e5 - ¢i)

L' is computed by replacing the value of the flux on the [/l + 1 boundary with that
computed using the [ + 1 grid. For example,
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So, as promised, L! only depends on values of ¢! in Q! — P(Q!F1).
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2.2 Extending Multigrid to AMR

The AMRPoisson algorithm is structured like a multigrid Poisson solve. We start at the
finest level, repeatedly coarsen and relax to get a residual for the coarsest level, solve on the
coarsest level, then repeatedly interpolate and relax until we are back to the finest level.
(This is called a V-cycle.) The key difference is that AMRPoisson generalizes multigrid to
the case where levels need not cover the entire problem domain.

The AMRPoisson algorithm relies on four sets of operators:

e The discretizations of A, i.e., LV and L.

e A level smoothing operator Smooth(e,r), where e and r are defined on €.

e Averaging (A) and Interpolation (I) operators. The averaging operator maps
quantities defined on Q* onto quantities defined on P(£2¥). The interpolation operator
maps quantities the other direction.

e A level 0 solver Solve(e,r) for solving the problem L°(e) = r, where e and r are
defined on Q°. We use one iteration of a vanilla multigrid solver.
The purpose of the level smoothing operator is to damp the high-frequency error.
Operationally, Smooth(e’, ') modifies its first argument by doing one iteration of Gauss-
Seidel:
l l NFlL, 1 l
e; == e + )\i(Li (e',0) — %)
with red-black ordering. The second argument to L'V is 0 because tl;e smoothing operator
is only working on one level. The relaxation parameter ) is set to % for interior cells and

% for boundary cells.

Figure 1 shows the complete AMRPoisson algorithm. We begin by setting the residual
on the finest level, using physical boundary conditions and boundary conditions interpolated
from the second finest level as necessary. Then, for each [ from finest on down, we smooth
the error at the current level, update phi, and set the residual for the next coarser level.
Upon reaching level 0, we use our coarse level solver to improve ¢¥. To complete the V-cycle
we propagate improvements back up to the finest level. For each [ from coarsest on up, we
update the correction e! by interpolating e/~! on P(£!), construct a separate correction ée’
that incorporates information from the rest of e/~!, and update e/ and ¢'. The reason we
cannot simply interpolate and then smooth the level is that the boundary condition for the
smoothing would be incorrect, having not taken into account the coarser level correction
on Q1 — P(QY).

3 Implementation

In this section we try to give the flavor of Titanium and illustrate how useful it is
for writing parallel scientific codes. Our goals in writing AMRPoisson were to write a
small, clean program, but also to achieve good performance on symmetric multiprocessors
(SMPs), distributed-memory supercomputers (e.g., Cray T3E, networks of workstations),
and uniprocessors.

Titanium uses a SPMD model of parallelism; that is, a single program is concurrently
executed by some number of processes, but the processes need not be in lockstep. Processes
can synchronize and communicate using shared objects or arrays, or via language primitives
such as broadcasts, barriers, scans, reductions, and locks. As the language stands, the
number of processes is fixed at startup and there is no dynamic creation of threads as there
is in Java.



AMRPoisson(¢, p)
plmaz .— plmax _ LNF,l(qslmaac’ ¢lmax—1)

forl =lmer...1
d)l,save = ¢l
Smooth(e!, )
¢l = ¢l + el
e1:=0
A BT oo
Pt = LN (¢ ¢4, ¢h) on 1 — P(QY)
end for
Solve(e’, r?)
¢ = @0 4 O
forl=1...lnaz
ei=e + I
rbi= b — INFi(EL =1
sel :==0
Smooth(de!, )
e := el + dé
(;Sl — ¢l,save + ¢l
end for
end AMRPoisson

FiGc. 1. The AMRPoisson algorithm.
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static void pointRelax(double [3d] local fieldx,
double [3d] local rhsx,
double [3d] local factorx,
double hsquared,
Point<3> offset) {
double [3d] local field = fieldx.translate(offset);
double [3d] local rhs = rhsx.translate(offset);
double [3d] local factor = factorx.translate(offset);
foreach (p within rhs.domain() / [2, 2, 2]) {
field[p * 2] += factor[p * 2] =*

(field[p * 2 + [ 0, 0, 111 +
field[p * 2 + [ 0, 0,-1]1] +
field[p * 2 + [ 0, 1, 0]] +
field[p * 2 + [ 0,-1, 011 +
field[p * 2 + [ 1, 0, 011 +
field[p * 2 + [-1, 0, 0]] -
6 x field[p * 2] - hsquared * rhs[p * 2]);

Fig. 2. A Titanium method for doing point relaxzation. To allow red-black ordering, this
method only computes on 1/8 of the points in rhs.domain(). One full pass with red-black ordering
therefore requires 8 calls to pointRelax().

The Titanium language has a global address space, but not all objects are necessarily
equally expensive to access. On networks of workstations, for example, code compiled by
the Titanium compiler represents some references as (proc, addr) pairs. Access to a remote
datum, which can occur by accessing an array element (a[p]) or a field of an object (o.f),
generates communication. To save the run-time cost of checking whether a reference is
remote, the programmer may statically specify it to be local by using the local type
modifier. On SMPs and on uniprocessors the local modifier has no effect, and all pointers
are represented simply as addresses.

Both the SPMD model and the distinction between local and not-necessarily-local
references are also present in the Split-C [5] language. Split-C, FIDIL [7], and Java were
three of the main influences on Titanium’s design.

3.1 Example 1

More execution time is spent in the pointRelax () method than any other. See figure 2.
The pointRelax () method is used in Gauss-Siedel relaxation (the Smooth(e, r!) operator)
and in computing LV, The only differences between this code and pure Java are the
foreach control structure and the use of certain Titanium types. There are six examples
of Titanium’s multidimensional arrays, each 3-dimensional and local. As one might expect,
we have arranged this most important method to operate on arrays known to be local. The
Point<3> and RectDomain<3> types are also used. A Point is a tuple of integers. A Domain
is a set of points. A RectDomain is a set of Points that can be represented by an integer
start, end, and stride for each dimension. The foreach construct simply iterates over a
Domain or RectDomain—it is not a parallel construct. Parallelism is instead expressed with



foreach (p within AMR.processes.domain()) {
AMRProcess ap = AMR.processes[p];
foreach (ii within ap.levels[1l].patches.domain()) {
Patch otherPatch = ap.levels[1l].patches[ii];
if (this != otherPatch) {
RectDomain<3> b = gdomain * otherPatch.domain;
if (! b.isNull()) {
RelatedPatch rp = new RelatedPatch();
rp.domain = b;
rp.patch = otherPatch;
adjacentList.push(rp);
}
}
}
}

adjacentPatches = adjacentList.toArray();

Fic. 3. Cualculation of adjacentPatches, an array of patches at the same level that border
this patch.

Titanium’s SPMD model of computation.

Titanium arrays map indices from a RectDomain, i.e., Points, to some type. Various
remapping operations are available, such as translation, reordering or scaling of dimensions,
and so on.

Many Titanium programs, including AMRPoisson, alternate computation phases with
communication phases. Before using the pointRelax() method, communication may be
necessary to fill ghost regions. The SPMD model allows computation phases to proceed
independently in each process; the number and size of patches may vary from process to
process.

3.2 Example 2

One of the useful features of Titanium is the ability to directly manipulate Points,
Domains, RectDomains. In boundary calculations, for example, it is useful to calculate a
set of cells over which we shall iterate. Such sets can be easily represented in Titanium as
Domains or RectDomains.

The example in figure 3 is taken from the Patch class in AMRPoisson. We consider each
level ! to be the union of n; rectangular patches Q4 for k € {1,...,n;}. Over the course
of a V-cycle, computing values inside a patch often requires values from its neighboring
patches at the same level, and from overlapping patches above and below. We pre-compute
many of these relationships and reuse them several times. The figure shows code to compute
adjacent patches at the same level. The outer loop iterates over AMR.processes, an array
of per-process data. The inner loop iterates over each patch at level [ “owned” by process
p. Adjacency is determined by a brute force comparison of domains. If this patch (this)
and another patch (otherPatch) are adjacent, then the domain of this patch extended by
its ghost region (gdomain) and the domain of the other patch (otherPatch.domain) will
have a non-empty intersection (b).



1 processor | 2 processors | 4 processors | 8 processors
time (sec) 151 78.9 43.4 28.9
speedup 1.91 3.47 5.22

Fic. 4. Times are wall-clock times in seconds on a Sun Enterprise SMP, average of 3 runs,
rounded to 3 significant figures. Each run performed 8 V-cycles on the grid hierarchy described in
the text.

4 Results and Discussion

Our implementation of AMRPoisson assumes that an adaptively refined grid hierarchy is
provided as input. In addition, we assume that a distribution of grid patches to processes
is part of the input. We are in the process of augmenting our implementation to compute
a grid hierarchy and distribution using a variant of the methods used by Berger and
Rigoutsos [3] and Berger and Colella [2].

We present results from a Sun Enterprise SMP with 8 processors and 2 gigabytes of
RAM. Timing results are shown in figure 4. The grid hierarchy used for experiments has 5
levels as follows.

level | # of patches | size of patches
0 1 16x16x16
1 8 16x16x16
2 8 24x24x24
3 8 40x40x40
4 8 72x72x72
Complete results as of March, 1999, on SMPs

and on the University of California’s Network of Workstations (NOW), are available at
http://www.cs.berkeley.edu/projects/titanium/AMR/. Also, we plan to compare our
uniprocessor performance to an independent, sequential C++ implementation of the same
algorithm now in progress.

In tuning the performance of parallel programs, we find it useful to visualize the
bottlenecks with timelines. Traditional profiling tools provide little information on
synchronization and load balancing. (see figure 5). The distribution of patches to processors
is part of our input; timelines help to distinguish inherent inefficiencies due to load
imbalances from inefficiencies due to performance bugs. Examining timelines allowed us to
find several performance bugs in the code to do interlevel calculations. For example, in one
case we were acquiring data from a finer patch one element at a time, with no adequate way
to hide communication latency if the finer patch were expensive to access. A hand-inserted
bulk prefetch was by far the more efficient option on distributed memory platforms.

5 Conclusion

Although both the Titanium language and compiler and the AMRPoisson application are
still under development, we are pleased with our experience thus far. The algorithm’s
adaptivity is well-suited to Titanium’s SPMD style; boundary calculations are easily
expressed with the aid of the Point and Domain types; and Titanium arrays conveniently
represent discretized grids. The ease of programming afforded by Titanium does not
degrade performance, and may even be beneficial in so far as it makes programs easier
to analyze and modify. Finally, relatively simple performance-measuring tools served us
well in finding and fixing performance bottlenecks.



: mainLoop: iteration O
: mainLoop: iteration 0
: mainLoop: iteration 0
: mainLoop: iteration O
: done with finest; doing fine to coarse
: done with finest; doing fine to coarse
: done with finest; doing fine to coarse
: done with finest; doing fine to coarse

: done w/ fine to coarse; doing coarsest
: done w/ fine to coarse; doing coarsest
: done w/ fine to coarse; doing coarsest
: done w/ fine to coarse; doing coarsest
: Multigrid 32x32x32

: Multigrid 16x16x16

: Multigrid 8x8x8

: Multigrid 4x4x4

: Multigrid 2x2x2

. 0:Multigrid 1x1x1

" 0: donew/ Multigrid 1x1x1

0: done w/ Multigrid 2x2x2

i . 0: done w/ Multigrid 4x4x4

0: done w/ Multigrid 8x8x8

0: done w/ Multigrid 16x16x16

0: done w/ Multigrid 32x32x32

0: done w/ coarsest; doing coarse to fine
1: done w/ coarsest; doing coarse to fine
: done w/ coarsest; doing coarse to fine
: done w/ coarsest; doing coarse to fine

: done w/ coarse to fine; checking for convergence
: done w/ coarse to fine; checking for convergence
: done w/ coarse to fine; checking for convergence
: done w/ coarse to fine; checking for convergence

: done checking for convergence
: done checking for convergence
: done checking for convergence
. done checking for convergence
: end

Fi1c. 5. A timeline for a J-processor run of AMRPoisson with a 32232232 grid at level 0. Time
goes from top to bottom. At left is one column per processor. Any delay at a barrier is indicated by
a grey box or, for insignificant delays, a solid horizontal line. At right, each event’s label is preceded
by a processor number.
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