(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 16414, 496]*)
(*NotebookOutlinePosition[ 17282, 524]*)
(* CellTagsIndexPosition[ 17238, 520]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[
StyleBox[
RowBox[{\(ds\^2\), " ", "=", " ",
RowBox[{
\(\(-\((1\ - \ \(2 GM/c\^2\)\/r)\)\) \((cdt)\)\^2\), " ", "+", " ",
FractionBox[\(dr\^2\),
RowBox[{"1", " ",
StyleBox["-",
FontSize->18], \(\(2 GM/c\^2\)\/r\)}]], " ", "+", " ",
\(\(r\^2\)
\((d\[Theta]\^2\ + \ \(sin\^2\) \[Theta]\ d\[CurlyPhi]\^2)
\)\)}]}],
FontSize->18]], "Input"],
Cell[TextData[{
StyleBox[
"The above tells us how to find the interval between events labeled by the \
points (ct, r, \[Theta],\[Phi]) and (ct +cdt,r + dr, \[Theta] + d\[Theta], \
\[Phi] + d\[Phi]) in the spacetime exterior to a black hole's special surface \
called the event horizon.\n",
FontSize->18],
StyleBox["\nThe Event Horizon", "Section",
FontSize->18]
}], "Text"],
Cell[TextData[{
"In Newtonian physics, space is Euclidean and time runs uniformly forward, \
there being no variation in the properties of space or time throughout the \
universe. Nevertheless we can still gain a preliminary view of the \
significance of an event horizon by first looking at the Newtonian 'event \
horizon'.\n\nConsider an object of mass M, such as the earth or a planet. \
Suppose one were to pose the following question:\n\n",
StyleBox[
"What is the minimum speed with which a rocket ship must have in order to \
escape the gravitational effect of the attracting object?\n\n",
FontSlant->"Italic"],
"The speed which answers the above question is called the ",
StyleBox["escape velocity. ",
FontWeight->"Bold"],
" It turns out that the speed can be worked out by using the conservation \
of energy. We only give the result here:"
}], "Text",
FontSize->18],
Cell[BoxData[
StyleBox[\(V\_escape\ \ = \ \ \@\(\(2 GM\)\/R\)\),
FontSize->18]], "Input"],
Cell[TextData[{
"This formula tells us that if the mass of the attracting object and its \
radius are given, then we can find the needed speed. If one puts in the mass \
of the earth for M and the radius of the earth for R, one finds that the \
escape velocity for the earth is 11 km/sec. For an initial speed smaller \
than this the rocket shot straight upward will rise to some maximum height, \
stop, and then fall back to the earth's surface.\n\nNow we use this escape \
velocity idea in conjunction with a tenant of the special theory of \
relativity to arrive at our qualitative estimate for the size of an event \
horizon. Since we know that the biggest velocity that can be generated is \
the speed of light c, let's plug it into the above formula. One immediately \
sees that only at a special value of R\nwill the condition ",
Cell[BoxData[
StyleBox[\(V\_escape\),
FontFamily->"Times"]]],
" = c be satisfied. When we algebraically solve for this special value \
fro R we get"
}], "Text",
FontSize->18],
Cell[BoxData[
RowBox[{
StyleBox[\(R\_schwarschild\),
FontSize->18],
StyleBox[" ",
FontSize->18],
StyleBox["=",
FontSize->18],
StyleBox[" ",
FontSize->18],
StyleBox[\(\(2 GM\)\/c\^2\),
FontSize->18]}]], "Input"],
Cell["\<\
This result is a peculiar mix of Newtonian and Special Relativity \
and is strictly not valid.Nevertheless,it gives us a nice intiutive \
conception of just what the event horizon represents:the event horizon \
represents the smallest distance from an object of mass M for which one has a \
chance to escape by projecting straight out.This is the smallest such \
distance because to start from a distance closer than this would entail \
having to have an escape velocity larger than the speed of light...and we \
know nature does not allow such speeds.
Thus, if one somehow gets closer than the Schwarzschild radius, one is \
trapped! Not even light can get out!
Thus, the event horizon is a critical surface inside which one is doomed to a \
short life, soon being pulled to the center where the gravitational force \
becomes infinitely large.
Also, the surface of the Schwarzschild radius is black since no light \
emerges from it. Thus the name BLACK HOLE: stuff falls in, but nothing comes \
out!!\
\>", "Text",
FontSize->18],
Cell[CellGroupData[{
Cell[TextData[{
"Schwarzschild Event Horizon\n\n",
StyleBox[
"The Schwarzschild event horizon turns out to have an effective radius of \
the same form as we have for the 'Newtonian black hole'...\n\nNote that when \
the value of the radius becomes the Schwarzschild radius, the\npart of the \
interval between events that describes the contribution from the timelike \
part becomes zero. Note also that the contribution from the part which \
describes the spatial distance between nearby points becomes infinite...but \
the local speed of light, which is defined to be:", "Text",
FontSize->18,
FontWeight->"Plain"],
Cell[BoxData[
\(\(\ ds\^\(2\ \)\ \ = \ \ 0\)\)]],
" becomes "
}], "Section"],
Cell[BoxData[
StyleBox[
\(Local\ speed\ of\ light\ = \ \
c \((\ 1\ - \ \(2 GM\)\/\(\(c\^2\) r\))\)\),
FontSize->18]], "Input"],
Cell[BoxData[""], "Input"],
Cell[BoxData[{
RowBox[{
StyleBox[
\(One\ of\ the\ first\ things\ to\ notice\ about\ this\ last\ result\
is\ that\ the\ speed\ of\ light\ is\ position\ dependent.\ \ The\
closer\ one\ gets\ to\ the\ Schwarzschild\ radius\ the\ smaller\ the
\ speed\ of\ light\ becomes\),
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[",",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[
\(so\ that\ at\ the\ Schwarzschild\ radius\ it\ is\ exactly\
zero.\ \ For\ points\ with\ r\ larger\ than\ 2 GM/c\^2\ \ the\ speed
\ of\ light\ is\ greater\ than\ zero\ and\ gets\ bigger\ and\ bigger
\ as\ one\ goes\ farther\ away\ from\ the\ event\ horizon.\ When\ r
\ attains\ values\ very\ large\ compared\ to\ the\ Schwarzschild\
radius\),
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[",",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
RowBox[{
StyleBox["the",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["speed",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["of",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["light",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["approaches",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
RowBox[{
StyleBox["c",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[".",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"], "\n", "\t\t", "\n", "\n",
StyleBox["W",
FontWeight->"Plain",
FontSlant->"Plain",
FontTracking->"Plain",
FontVariations->{"Underline"->False,
"Outline"->False,
"Shadow"->False}]}],
StyleBox[" ",
FontWeight->"Plain",
FontSlant->"Plain",
FontTracking->"Plain",
FontVariations->{"Underline"->False,
"Outline"->False,
"Shadow"->False}],
StyleBox["e",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["note",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["that",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["the",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["proper",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["distance",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["between",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["events",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["at",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["the",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["same",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["temporal",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["location",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox[" ",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"],
StyleBox["is",
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"]}]}],
StyleBox[
\(dependent\ on\ just\ how\ far\ on\ is\ in\ relation\ to\ the\
Schwarzschild\ \(radius : \)\),
"Text",
FontFamily->"Times",
FontSize->18,
FontWeight->"Plain"]}], "Input",
CellMargins->{{19, Inherited}, {Inherited, Inherited}}],
Cell[BoxData[
StyleBox[
\(proper\ distance\ \ between\ events\ at\ the\ same\ temporal\ point\
= \ \ dr\/\@\((1\ - \ \(2 GM\)\/\(\(c\^2\) r\))\)\),
FontSize->18]], "Input"],
Cell[TextData[StyleBox[
"Finally, we can get the proper time between events at the same spatial \
location by putting dr= 0 in the Schwarzschild spacetime metric. The result \
is:",
FontSize->18]], "Text"],
Cell[BoxData[
StyleBox[
\(proper\ time\ between\ events\ at\ the\ same\ spatial\ location\ =
\ \ dt \@\(1 - GM\/\(r\ c\^2\)\)\),
FontSize->18]], "Input"],
Cell[BoxData[""], "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"Singularity at center of a Black Hole\n\n",
StyleBox[
"As we emphasized, it is the curvature at a point of a spacetime which is \
the real indicator of a permanent gravitational field. For the Schwarzschild \
spacetime given above, the curvature can be shown to go as", "Text"]
}], "Section"],
Cell[BoxData[
StyleBox[\(Curvature\ \ \ \ \ \[Tilde] \ \ \ \ \ \ M\/r\^3\),
FontSize->18]], "Input"],
Cell[TextData[StyleBox[
"Thus at the Schwarzschild radius the curvature is finite. However, at the \
origin r = 0, the curvature becomes infinite. This is a clear indication \
that something strange is going on at such a point, because the very \
geometrical object which describes the permanency of the gravitational field \
is unboundedly large at r = 0. Such a point is called a singularity and its \
existence in a spacetime is bad news. Nothing is well defined at such a \
point. \n\nThe interesting thing about the Schwarzschild singularity is that \
it is hidden from an external observer's view by the event horizon! It \n\
seems that nature is hiding these bizarre points from us. If nature makes \
singularities which possess no event horizon, then the singular point would \
be visible. Since all known laws of nature would break down there, it is not \
even clear that we would have a universe which is predictable. This is \
because with naked singularities sitting around and visible, there is no \
predicting what would emerge from such points.",
FontSize->18]], "Text"]
}, Open ]]
},
FrontEndVersion->"Macintosh 3.0",
ScreenRectangle->{{0, 832}, {0, 604}},
WindowToolbars->"RulerBar",
WindowSize->{692, 657},
WindowMargins->{{64, Automatic}, {Automatic, -2}},
MacintoshSystemPageSetup->"\<\
00l0001804P000000_P2B?ofoo833P9F;085:0?l0@00005X0FP000003]P;J001
0@00I00100000@0200000BL?00400000000000000000030001000000000@0?o>
okX?AP^^0201000000000000000001T1\>"
]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file. The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 492, 13, 100, "Input"],
Cell[2204, 64, 387, 9, 124, "Text"],
Cell[2594, 75, 898, 17, 322, "Text"],
Cell[3495, 94, 100, 2, 67, "Input"],
Cell[3598, 98, 1040, 18, 278, "Text"],
Cell[4641, 118, 289, 11, 55, "Input"],
Cell[4933, 131, 1049, 21, 366, "Text"],
Cell[CellGroupData[{
Cell[6007, 156, 718, 15, 244, "Section"],
Cell[6728, 173, 153, 4, 55, "Input"],
Cell[6884, 179, 26, 0, 26, "Input"],
Cell[6913, 181, 7295, 260, 227, "Input"],
Cell[14211, 443, 199, 4, 119, "Input"],
Cell[14413, 449, 208, 4, 58, "Text"],
Cell[14624, 455, 179, 4, 91, "Input"],
Cell[14806, 461, 26, 0, 26, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[14869, 466, 316, 6, 128, "Section"],
Cell[15188, 474, 111, 2, 54, "Input"],
Cell[15302, 478, 1096, 15, 322, "Text"]
}, Open ]]
}
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)