
Chapter 12

Applications of the Special Theory

I.  Introduction

We take the postulates discussed in Chapter 11 to be confirmed by the experimental tests we outlined there,

not to mention the many indirect tests of the postulates in concert with other assumptions which have been

made literally billions of times over the last 75 years. It is our task in this chapter to explore in some detail

some of the most important ramifications of the postulates. This exploration will take the form of a series of

analyses of various issues exposed by a straight forward reading of the physical content of the postulates.

Our treatment will introduce an approach which we believe is useful, for the description of all of the applica-

tions of the Special Theory.  We assume each inertial observer has a clock and the ability to send and receive

light signals. With these two properties each observer can, by making maximal use of just these experiences on

his world line, discover the motion dependence of the time and spatial interval between events off his world

line. The use of a small number of constructs satisfies another need as well. This technique allows us to de-

velop the applications of the postulates in as simple a manner as possible, without the use of sophisticated

mathematics.

First we will discuss the concept of simultaneity. This is not a new issue for us. In Chapter 9 we found that for

all spacetime models from Aristotelian through Newtonian a concept of “simultaneity slice” forms an intrinsic

part of the models. It is with Einstein’s Special Theory that this concept will be necessarily changed. We will

explain in the present chapter how a new concept of simultaneity will naturally rise from the ashes of the

Galilean spacetime simultaneity slice, given the validity of Postulate II.

Second we will explain how the new concept of simultaneity is sensitive to the relative motion of pairs of

inertial observers, in contrast to the observer independent of the simultaneity of events in the Galilean

spacetime.

After motivating the concept of relativistic simultaneity we will analyze the major effects of the Special

Theory: time dilation and length contraction.

II. Galilean Simultaneity

A fundamental issue which was faced by Einstein in his 1905 paper on the Special Theory of Relativity was

the concept of simultaneity of events. As a means of orienting the reader, let us recall the basic ingredients



of the concept of simultaneity in the Galilean Spacetime model. This model has a universal time function which

serves to mark the time component of an event’s description in a way that is the same for all observers. The

t = constant slices denote the set of events simultaneous with a given event. Let us ask how a neo-Galilean

observer G might go about constructing such a subset of events. One way in which this might be done is to

have G send out some sort of probe signals from his worldline to various events of interest. The signals would

then be reflected back to G, where their arrival times would be compared with the times they were sent.

This procedure requires that some choice be made for the “probing stuff”. The observer G could advanta-

geously make use of the fact that there is no upper limit to the velocity with which objects can move. This

implies that instantaneous communication between a given event and other, arbitrarily distant events would

be possible in principle. Consequently, the procedure would go as follows: send out an infinitely fast signal and

receive its reflection instantaneously. Any number of events can be collected together by this procedure, all

simultaneous with a given event.

What are the properties of the class of events thus constructed? First, all events in the class have the same

reading on the universal clock, which ticks away absolute time. Second, the distance between the given,

reference event and any other event in the class is arbitrary. This is because of the infinite velocity available

for the sent and the reflected signals. An event spatially nearby would be reached by the outgoing probe

signal at the same instant as would an arbitrarily distant event. Third, the state of motion of the given ob-

server has no effect on his assessment of simultaneity, as it is a corner stone of the Galilean spacetime model

that the uniform relative motions of different observers has no observable consequences. Consequently,

suppose a G
1
 observer finds that some event e is simultaneous with an event g

1
 on his worldline.  Another

observer O
2
, uniformly moving with respect to G

2
, will find the event e to be simultaneous with an event g

2
 on

his worldline. The motion independence of any objective assessments that these two observers make implies

that G
1
 and G

2
 will both find the events e, g

1
 and g

2
 to be simultaneous. We illustrate this state of affairs in

Fig. 12.1.



The same property holds for a given observer’s assessment of the simultaneity of two events e
1
 and e

2
 off his

worldline. For, as shown in Fig. 12.2, if e
1
 and e

2
 are simultaneous with g

1
, the same relation of simultaneity

will be found by G
2
.

From Einstein’s point of view in the early l900’s, one thing stands out as a problem, namely, the role of the

probe signal in our characterization of simultaneity. One must consider the plausibility of the physical possibil-

ity of sending information at infinite velocity. There is no known material which can or does achieve infinite

velocity. Thus, Einstein’s problem was to identify an appropriate signal material which could be used to deter-

mine a physically realizable definition of simultaneity. The previous considerations suggest that one find a

material possessing the fastest possible signal velocity. By the early l900’s it was well known that the veloc-

ity of light was very large compared to the velocity of any other object. Light thus seems to be the prime

candidate for the signalling substance. From this point on in the development of spacetime models, light

assumes a pre-eminent position, culminating in the unification of electromagnetic and mechanical theories.

III. Time and Distance Measurements Using Light Clocks and Signals

In the sequel we will discuss time measurements which will be made by a single observer. Thus it is well to

have an economical characterization of the concept of clock. We give a characterization which makes use of

light and a minimum of additional constructs, such as mirrors.

In the following paragraphs we discuss an example of a clock that is constructible in principle and turns out to

be useful for several discussions in relativity theory thought experiments. This is the so-called “light clock”. It

is constructed by placing two mirrors some distance apart. Attached to one of the mirrors is a source of light

pulses. Think of a laser pulsing away, emitting bunches of photons. These pulses travel from one mirror to the

other and then bounce back to the first mirror. We define “one tick” of such a clock to be that time required



for a single round trip. In Fig. 12.3 we show a very schematic diagram of such a clock (12.3a) and the

spacetime diagram (12.3b) of several ticks.

This example provides us with a kind of clock that is very simple in principle and uses light in an essential way.
Since the speed of light is unaffected by the motion of the source it follows that any such “light clock” will be
as immune as possible from effects that depend upon motion

Another kind of clock is provided by the oscillations of electro-magnetic waves emitted when an atom emits
or absorbs a quantum of radiation.  The structure of the atom is such that it can only exist in certain allowed
energy states. When an atom in an energy state of energy E

2
 > E

1
 makes a transition form E

2
 to E

1
 it emits

electromagnetic radiation whose frequency of oscillation is proportional to the difference between the two
energies.  The frequency of this wave is very precise. Thus if one measures the frequency f one in essence
has a very accurate clock since the period of the wave is T = 1/f.

The two examples just discussed do not exhaust the possibilities. The point is that any observer can carry
with him a device which possesses the required repetitive property we usually connote by “clock”. Through-
out our subsequent discussions in this chapter let us assume that each observer has his proper time measur-
ing clock, the structure of which is also assumed to be sufficiently ideal so as to obviate any further discus-
sion of any “mechanical” faults.

There is a second assumption that we find very convenient to make.  This is that each observer has the
ability to send and receive light signals.

We will assume, therefore, that every observer (a) has a light clock that measures proper time, and (b) has
the ability to send and receive light signals. We turn to a discussion of further effects that are consequences
of our acceptance of the postulates.

Suppose an observer, armed with his clock and light signals wishes to record the time of occurrence of an
event not on his worldline. How could he proceed to record such an event given that he can not “walk”
over and look at the event and his clock at the same instant? He must stay at some distinct space-time point
and make the determination. In Fig. 12.4(a) we show the event of interest and the world line of the
observer on a spacetime diagram.



Our observer must now decide how to define the time of occurrence of E. One procedure would be to have O

emit a light signal at some instant of time, let it travel out in all directions and subsequently arrive at E. Of

course, for the observer to eventually know that his light probe successfully “found” E, a light signal would

have to be reflected back to O’s worldline. Hence the complete sequence would be as shown in Fig. 12.4(b).

There we show the observer’s light clock, which starts ticking at event e, corresponding to the emission of

the light signal and stops ticking when event r is reached as O records the received signal from E. The total

local proper time on O’s clock is the number of ticks on his light clock multiplied by the time required for a

complete single tick. Incidentally if the fact that e just happens to have been situated so that it just “hits” E

seems a bit rigged we simply remark that the observer could be continuously probing his environment with

light signals. The event E will then be intersected by some signal and then echoed back. This is shown pictori-

ally in Fig. 12.5.

We are ready to specify in detail how an observer O determines the time and the spatial distance of events

that are not on his worldline. The idea is really very simple to describe. O emits a light signal at some time as

measured on his local clock. The signal travels to the event E, is immediately reflected back to O’s worldline

and is detected by O at some subsequent time. Let t
e
 be the time that the light signal is sent and t

r
 be the



time that the return signal is received. The spacetime diagram of this seqeunce of events is shown in Fig.

12.6.

We define the time of occurrence of the event E to be the time at which the first light signal was sent plus

half of the total time required for the probe signal to go out to E and return. In symbols this reads:

t
E
 = t

e
 +  1/2 (t

r
 -  t

e
)

or

 t
E
 =  1/2 (t

E
 + t

 r
 ) (12.1)

Next, we define the spatial distance from our position to E. We simply note that if the elapsed time for the

probe signal’s trip is t
r
 -  t

e 
then the distance to E is the speed of light times 1/2 this time or

d
E
 = c 1/2 (t

r
  - t

e
)

Recall, however, that we have adopted dimensions which make c = 1. Thus

d
E
 =  1/2  (t

r
  -  t

e
) (12.2)

Using this technique any observer can spatially and temporally order all those events which he can reach (or

which can reach him) by light signals.

IV. Definition of Relativistic Simultaneity

We can now develop a definition of relativistic simultaneity as follows. Let us identify an event E
o
 on the

worldline of an observer.

To construct the set of events simultaneous with the event E
o
 the observer sends and subsequently re-

ceives a set of N light signals to various events off his worldline. Let us label the i th such pair of sent and

received signals by giving the two times t
s

(i)
, t

r

(i )
. From our definition of the time of occurrence, there is a

time on the worldline of the observer which coincides with the event intersected by the i th pair. This time is



t (i ) =
1

2
(ts

( i ) + tr
(i ))

It will not in general be the case that the time t(i) coincides with the time of the chosen event E
o
 on the

observer’s worldline. Thus, many of the probe signals will correspond to other events on the observer’s

worldline. So be it. We sift through the set of probe signals, calculate the time of occurrence for each and

keep those which pass the test: t
(i ) = tE p

.  The set of events constructed in this way defines what we shall

call the relativistic simultaneity slice. This procedure may be shown pictorially as follows.

Note that the finiteness of the velocity of light forces us to send probe signals out in advance of the event E
o

and to receive the reflected probe signals after the event E
o
. Consider a probe signal which was sent out very

much earlier than the event E
o
. The observer will receive the return signal much later than the event E

o
. Such

a pair t
s
, t

r
 will have the property that tE0

>> ts  and  tr >> tE 0
.  Consequently t

r
 >> t

s
 Thus t

r
 - t

s
 is a large real

number. Recall that the spatial distance to a given event off the observer’s worldline is d
E
 = 1/2 (t

r
  - t

s
). We

conclude that the event intersected by this very early sent, ‘very late received’ pair of signals is necessarily

at a large spatial distance from the observer.

V. The Relativity of Relativistic Simultaneity

Recall that the simultaneity of events in the Galilean spacetime was independent of the relative state of

motion of two inertial observers, as illustrated in Fig. 12.1. The simultaneity of events for relativistic observ-

ers, however, is dependent on their relative state of motion. That is, given that one inertial observer finds a

set of events off his worldline which are simultaneous (the simultaneity slice), another inertial observer who is

moving relative to the first will necessarily find these same events not to be simultaneous.



In order to see that relativistic simultaneity is relative we construct an example. In the previous section we

discussed the construction of the set of events in spacetime which would have been simultaneous with a

given event on the worldline of an observer (see Fig. 12.7). Among those events let us single out two special

ones E
1
 and E

2
 for further study. These two have additional properties that they are the same spatial distance

from E
o
 and light signals from E

1
 and E

2
 arrive at 0’s worldline simultaneously. We illustrate these in the

following figure.

Consider another inertial observer 0  who receives information about the three events E
o
, E

1
, and E

2
. We

arrange matters so that O crosses O’s worldline just at the event E
o
. The question is: will 0  experience E

1
 and

E
2
 at the same time as measured by his clock that he carries with him? We claim that the answer is clearly

NO! To see this we just have to construct the spacetime diagram of the situation described above and exam-

ine the times of reception to the light signals from E
1
 and E

2
. This is shown as follows.

The light from E
2
 arrives at the worldline of 0  before the light from E

1
. Consequently 0  would say that E

2

occurred before E
1
, while 0 would say the two events were definitely simultaneous with E

o
.

We conclude that, in general, two completely equivalent, but relatively moving inertial observers will not find



the same collection of events to be simultaneous in the relativistic simultaneity sense. In the special relativity

case this observer dependence of the “simultaneity slice” implies that the “slicing up” of spacetime by a given

observer will not be universal. Different observers will not agree on the collection of events simultaneous with

each observers local clock. This means that the universal time function of the Galilean spacetime is no longer

applicable. In essence this implies the demise of absolute time.

VI. Time Dilation and Length Contraction

Our next task is to analyze some of the relationships between sequences of events off O’s worldline. To make

the treatment as simple as possible, we first consider the problem of what can be learned about sequences of

events that are on the worldline of a particle that is moving with respect to O’s worldline with some non-zero

velocity. Let us arrange it so that the other moving particle’s worldline crosses O’s at some time on O’s clock.

Further let it be arranged so that the two local clocks, one O’s and the other attached to the moving particle,

to be labelled 0 . Both O and 0 ‘s clocks are reset to t = t  = 0 at the point of crossing. Now at some instant

after the crossing let O emit two light signals, one at time t
1
 and the other at time t

2
. Let the difference t

2
  -

t
1
 = T

o
. The question is: what time interval will be measured by the moving observer 0  attached to the

particle? The situation is shown in Fig. 12.10.

The signal sent at t
1
 will be received at some event E1

, while the signal sent at t
2
 will be received at some

event E2
, both events on the worldline of the moving observer 0 . Let these two light signals be echoed as

soon as sent so that they arrive at O’s worldline at the times t
3
 and t

4
 respectively. Now from our definitions

above, we can compute the time of occurrence of the events E
1
 and E

2
 which are simultaneous with E1

 and

E2
. We have

 tE1 
=

1

2
(t1 + t3 )

tE2
=

1

2
(t2 + t4 )



Then the interval between E
2
 and E

1
 measured by O is given as follows:

tE2
− tE1

=
1

2
( t2 + t4 ) −

1

2
(t1 + t3 ) =

1

2
(t2 − t1) +

1

2
( t4 − t3)

The difference t
4
 - t

3
, measured by O’s local clock, will be proportional to T because these clock readings are

real numbers. Since the clock’s readings are real numbers, there exists another real number λ such that t
4
 - t

3

= λ(t
2
 - t

l
). Thus, it follows that

tE2
− tE1

=
1

2
T0 +

1

2
T0 = (

1 +
2

)T0 ≡ T0

(12.3)

for some real number σ. That is, the interval between the events on O’s worldline simultaneous with the

events E1
 and E2

 is proportional to the interval between the two signals that were sent. This argument

shows that there is a real number which captures something of the motion dependence of a moving

observer’s record of the relative motion. We will, in short order, determine how σ depends on the relative

motion.

Let us pause to mention the basic idea behind this method. Suppose we have a source of waves and an

observer who detects the waves emitted by the source. Consider two situations. First, let the source of

waves and the observer be relatively at rest. The source emits waves with some characteristic wavelength.

We indicate the situation in Fig. 12.11,

In this situation the observer measures the distance between successive crests of the waves and finds the

wavelength (the distance between successive crests) to be identical to the wavelength produced by the

source.

Contrast the above situation with that in which the source of waves moves with some velocity, say away

from the stationary observer. What will the observer O now measure for the wavelength? To see the answer



qualitatively consider the following diagram.

The observer measures the distance between successive crests to be larger than he found when the source

was stationary relative to the observer.

This is because the source is running away from 0. The source emits waves just as it did before relative

motion was introduced. However, during the time a given crest travels out from the source and another crest

is emitted, the source has translated a distance to the right. The second crest thus has to travel further than

the first to get to O’s position. Hence O observes a longer wavelength. Now there is a reciprocal relation

between wavelength and the frequency of the source: frequency = (speed of propagation of wave)/(wave-

length). Thus a longer wavelength implies a lower frequency. Finally, T, the period of the wave, is defined to

be T = 1/frequency. Consequently the period is longer for a lower (i.e. smaller) frequency. This result is

usually referred to as the Doppler effect. If we turn the situation around and have the source move toward

the observer, the observed wavelength will be shorter due to the “crowding” of successive crests in the

direction of motion. Hence in this case the frequency will be higher and the period shorter. These intuitive,

“common sense” pictures are in essence incorporated in the Einstein definition of simultaneity and in the

determination of the time of occurrence of events which are not on O’s worldline.

Given the result of the above discussion, suppose we turn the situation around and let the moving observer

emit two signals separated by a time interval T on his clock. Then if there is to be complete equivalence

between the two observers we must require that the interval of the received signals be the same number σ

times the sent interval. If this is not demanded then it would be possible to distinguish between the two

observers. Postulate I forbids this. In Fig. 12.13 we show that two applications of the rule

Treceived = Tsent  give  T = 2T0 .



Given our discussion of the Doppler effect above we expect that there is some relative velocity dependence in

σ. Our next task is to find out just how this dependence is manifested. To see this we consider a two-ob-

server system like the above. This time we will work toward expressing the quantity σ in terms of the velocity

of 0  with respect to O. Thus suppose O sends a light signal from 0 to 0  which arrives at event B
2
. Let B

1
 be

the event which is the intersection of O’s worldline with 0 ‘s worldline. This sequence of events is shown in

the following Fig. 12.14.

Using the relation T
received

 = σT
sent

 we derive below a needed relation between tA1
,  tA2

,  and  tA3
.

tB2
− tB1

= (tA2
− tA1

)

tA3
− tA1

= (tB2
− tB1

) = 2 (tA2
− tA1

)

(12.4)

The definition of the velocity of 0  is V0  = d/t as measured by 0.  Using Eq. 12.1 and Eq. 12.2 and inspecting

Fig. 12.14 we have for V0  :



v
0

=

1

2
(tA3

− tA2
)

tA2
− tA1

+ 1

2
(tA3

− tA2
)

(12.5)

.

Consider the quantity tA3
 - tA3

 that occurs in the above equation.

tA3
− tA2

= (tA3
− tA1

) + (tA1
− tA2

) = 2(tA2
− tA1

) − (tA2
− tA1

)

              ∴ tA3
− tA2

= ( 2 −1)(tA2
− tA1

)
              (12.6)

Using Eq. 12.6 we have

tA2
− tA1

+
1

2
(tA3

− tA2
) =

(tA2
− tA1

)

2
2 + 1[ ] (12.7)

Now we are ready to simplify the denominator of Eq. 12.5. Substitute Eq. 12.6 into Eq. 12.5, with the result:

V =

1

2
( 2 − 1) (tA2

− tA1
)

(tA2
− tA1

)

2
 ( 2 + 1)

   ∴  V
0

=
2 −1
2 + 1

(12.8)

This expresses V
0
 in terms of σ. It is a two line calculation to invert to express in terms of V, with the result

=
1 + V

1 − V
(12.9)

Now V is restricted to be less than 1, corresponding to the vacuum speed of light. σ is 1 when V=0 and

monotonically increases as V approaches 1.

Thus we have established the manner in σ which depends on the velocity of 0  with respect to 0. In addition

we can see how our analysis is similar to a “radar ranging” method for measuring the velocity:  (1) bounce

two “radar” signals off the moving object, (2) measure the ratio of received to emitted time intervals be-

tween the two signals. This gives σ via the relation T
received

 = σT
sent

. (3) The velocity is then

calculated via v = ( 2 − 1)/( 2 +1).



Time Dilation

Consider two inertial observers A and B who have a non-zero relative velocity V. We arrange it so that A and

B have identical clocks. The question we wish to pose and answer is: if A’s clock has an elapsed time T for one

tick of his light clock, what will be the time for a tick of observer B’s light clock as measured by A? In order to

answer the above question we set up the experiment illustrated in Fig. 12.13.

The two tilted but parallel lines represent the world lines of the two mirrors of B’s light clock. One mirror

coincides with B’s worldline, while the other mirror is at rest relative to B. The events B
1
 and B

2
 correspond to

the completion of one tick of B’s clock. In order for A to know about the tick, he must emit the two probe

signals at t
1
 and t

3
. These are received back respectively at t

2
 and t

4
. According to A, B

1
 and B

2
 occur at

times tB1
 and tB2

 on A’s clock where:

tB1
=

1

2
(t1 + t2 )

tB2
= 1

2
(t3 + t4 )

The time interval between B
1
 and B

2
 as measured by A is given by

                                                   T1 2 /A = tB2
− tB1

=
1

2
[(t3 + t4 ) − (t1 + t2 )]                      (12.10)

Let us refer to clock readings on B’s worldline by 1  and  2.   Observer B sends a light signal to the mirror M
2

at some time τ
1 
and receives it back y at time τ

2
. As before we arrange it so that observers A and B start

their clocks when their origins cross. Thus between crossing and the sending of the first signal by A a time t
1

has elapsed. It follows from our analysis of the relation between intervals sent and received that

1 = t1

(12.11)



Consequently σ( σ t
1
) is the interval received by A at t

2
. A similar remark holds for t

4
. Thus we can state the

two relations

t2 = 1 = 2t1

(12.12)

t 4 = 2 = 2t3

(12.13)

On B’s worldline let us call the elapsed time between B
1
 and B

2
 T

12/B
. In terms of τ

1
 and τ

2
, and using the

relations in Eq. 12.12, Eq. 12.13 we have for T
12/B

:

T1 2 /B = 2 − 1 =
1

t4 − t1

(12.14)

Our analysis of the tick of B’s clock as experienced by A has thus led to the following set of four equations in

the observable quantities.

T12/ A =
1

2
(t3 + t4 ) − (t1 + t2 )[ ]

(12.15)

T12/ B =
1

t4 − t1

 (12.16)

t2 = 2t1

(12.17)

t4 = 2t3  or  t3 =
1

2 t1

(12.18)

We want to solve for T
12/A 

in terms of the velocity of B with respect to A and the interval T
12/B

 for the tick on

B’s clock. Substitute Eq. 12.17 and Eq. 12.18 into Eq. 12.15:



T1 2 /A =
1

2
 (

1
2

t4 + t4 )  −  (t1 + 2t1)
 
  

 
  

        =
1

2
t4 (

1 + 2

2
) −  t1 (1+ 2 )

 

 
 
 

 

 
 
  

        = 1

2
(1+ 2 )  [

t4
2

− t1]

Next solve Eq. 12.16 for t
4
:

t4 = T1 2 /B + 2t1

(12.19)

Finally the expression for T
12/A

 becomes

T12/ A =
1

2
(1+ 2 )  

T12/ B + 2t1[ ]
2 − t1

=
1

2
(1+ 2 )

T1 2 /B

(12.20)

From the Eq. 12.9 we can show that (1+ 2 ) / 2 = (1− v2 )
−

1

2 .  Hence we find that

T1 2 /A =
T1 2 /B

1 − v2

 (l2.21)

Now (1 - v2) is always smaller than 1 for v<1. Thus 
(1− v2 )

− 1

2  is always greater than 1. Consequently T
12/A

 is

always greater than T
12/B

. Therefore the Special Theory of Relativity predicts that moving clocks run slow.

This is the Time dilation effect and forms one of the most startling consequences of the postulates.

This effect has been conclusively tested in several experiments. The most recent was an experiment in which

sub-atomic particles, mu-mesons, were produced in a high-energy accelerator and stored there in a “storage

ring”. The particles had a velocity of 99.652% of the vacuum speed of light. This experiment was performed

by measuring the interval of time the mu-mesons existed before they underwent their normal decay into

other particles. The high-velocity mu-mesons were found to live longer than mu-mesons that decayed at rest



relative to the apparatus. The result of these studies was that Einstein’s time dilation formula was verified.

Length Contraction

Let us consider the two observers A and B again. Let A and B possess two identical light clocks. Thus the

distance between the two mirrors is measured to be the same when A and B are relatively at rest. Now,

however, our question has changed to: what is the length experienced by A of the distance between the two

mirrors that make up B’s light clock? We will use the same set-up as before. For the calculation of the length

contraction effect we focus on a different group of events. In the time dilation case we wanted to compare

observer A’s measurement of the ticking of B’s clock as compared to A’s clock. Here we want to compare the

distance determinations made by A and B of the distance between two points at rest with respect to B. This

we do, remembering to consistently use the Einstein definition of simultaneity. Now in order to make a length

determination the observer must make the measurement utilizing events that occur at the same time in the

observer’s frame of reference. We show the events of interest in the following figure.

At time t
1
 A sends a pulse to intersect the far mirror of B’s light clock at B

1
 and receives the return signal at

t
4
. Observer A sends another pulse at time t

2
 to intersect the near mirror (which also coincides with observer

B’s origin) at B
2
 and receives the return signal at t

3
. A crucial question that observer A must answer is: when

should A send the two signals so that A sees B
1
 and B

2
 as simultaneous. Well, from our previous experience

we can immediately state the answer. A will see B
1
 and B

2
 as simultaneous just in the case

1

2
(t1 + t4 ) =

1

2
(t2 + t3)

(12.22)

Next we state the relations between various sent and received time intervals derived from a straightforward

application of our basic rule Eq. 12.3.

t3 = ( t2 ) = 2t2

(12.23)



Now observer B can measure the length between the two mirrors of his clock by emitting the light signal that

arrives from A at τ
1
 receiving it at some time, τ

2
, later. We refer to the send and receive times as T

1
 and T

2
.

Then, the time required for the signal to go just to the far mirror will be the time (T
2
 - T

1
)/2 multiplied by the

speed of light, which is 1 in our system of units. This gives for B’s measurement of the length

LB =
1

2
(T2 − T1 )

 (12.24)

Using our rule Eq. 12.3 again this relation becomes

LB =
1

2

( t4 − 2t1)

 (12.25)

The distance   l  between B’s mirrors as measured by A will be the difference between A’s measurement of the

position of the mirrors. In terms of our basic definition of distance in Eq. 12.2 we have

  
l =

1

2
(t4 − t1) −

1

2
(t3 − t2 )

(12.26)

What follows are the manipulations necessary to take these relations and solve for the length   l  in terms of L

and any other relative velocity dependence that may be present. First we collect together all four relations.

1

2
(t1 + t4 ) =

1

2
(t2 + t3)

(12.27)

t3 = 2t2

(12.28)

L =
1

2
( t4 − 2t1) /

(12 29)

  
l =

1

2
(t4 − t1) −

1

2
(t3 − t2 )

 (12.30)

Our next move is to substitute Eq.12.28 into Eq. 12.27 and simplify.  The result is

1

2
(t1 + t4 ) =

1

2
( 2 + 1)t2

(12.31)



Next substitute Eq. 12.28 into Eq. 12.30 to obtain

  
l =

1

2
(t4 − t1 ) − ( 2 − 1)t2[ ]

(12.32)

Since we shall need it presently, solve Eq. 12.31 for t
2
:

t2 =
1

2 +1
(t1 + t4 )

(12.33)

The next few lines are the result of substitution of Eq. 12.33 into Eq. 12.32

  

l =
1

2
(t4 − t1) −

( 2 − 1)

( 2 + 1)
( t1 + t4)

 

 
 
 

 

 
 
 

  =
1

2

2t4 + t4 − 2t1 − t1 − 2t1 + t1 − 2t4 + t4[ ]
2 +1

  =
1

2

2t4 − 2 2t1[ ]
2 + 1

=
t4 − 2t1

2 +1

(12.34)

Finally, from Eq. 12.29 we have

  
l =

2 L
2 +1

(12.35)

But the quantity 2σ/  2 /  2  +  1 σ 2  is just (1-v2)1/2. Consequently the final result is

  l = L 1− v2

  (12.36)

This is the famous length contraction formula. It states that there is a legitimate disagreement between A

and B about the length between B’s mirrors.  Since (1 - v2) 1/2 is always less than 1, we see that the length of

the moving “ruler” is shorter than when at rest with respect to the observer.

Let us supply a numerical example, just to get some feeling for the velocities needed to have the length shrink

to say 99% and then to 90% of the rest length.   If we want   l /L to be .99 our formula above gives, when



solved for v a velocity of B with respect to A of 4.2318 x 107 m/s. For a 10% reduction in the length we find

that the velocity of B with respect to A would have to be 1.30764 x 108 m/s. At ordinary terrestial speeds

(which almost never exceed 2000 miles/hr., or around 895 m/s) this difference is absolutely negligible. Thus

we again learn that our limited experience with the properties of the world at very high speeds has once again

given us a mistaken impression about the manner in which the distance between points might depend on

other, relative attributes.


