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1 Introduction

1.1 Quantum Racing

This study is done in relation to the Society of Physics Students race team called Quantum Racing.
This team was formed as an entrant in the inaugural Grand Prix of BGSU in the spring semester
of 2006. The team not only participates for the enjoyment of racing, but to learn physics in a real
life setting. The kart referred to in this study is the kart fielded by Quantum Racing as is pictured
in figure 1.

Figure 1: The Quantum Racing kart driven by Jen Bradley in the 2006 Grand Prix of BGSU.

It has a base racing chassis manufactured by Haase with a custom role cage and safety system
built in house at the physics department.

1.2 Main Project Goals

In this study the areas of the thermodynamics of a small internal combustion engine and the chassis
dynamics of a racing kart are explored. The main goals of this are to get a better understanding
of the components of the Quantum Racing #42 kart and use this understanding to improve the
performance of the kart. However this study is not only useful for improving the performance of
the kart, but it is also important in other ways as well. Getting students involved with learning the
physics behind the kart is a great way of giving them hands on research experience. This study is
breaking new ground and setting the stage for further studies to come involving physics students of
all levels.



2 Thermodynamics of an IC Engine

2.1 Importance of a Thermodynamic Understanding

To improve the performance of any powered vehicle, the first obvious place to go to is the power
source. The Quantum Racing kart is powered by a Honda GX160 single cylinder overhead valved
general purpose engine running on E85 fuel. This particular engine is manufactured with the in-
tended fuel of gasoline, and it was converted to run on E85. The main focus of this area of study is
to understand how running the engine on E85 fuel effects the engine’s performance.

2.2 Basic Thermodynamic Model (Air Cycle
2.2.1 Assumptions

The simplest thermodynamic model of an engine, also known as an air cycle, makes many assump-
tions. The first thing is to assume that the engine has a volumetric efficiency of 1. This means that
the engine is essentially a perfect fluid pump drawing in a full volume of air and fuel (also known as
the charge) equal to the displacement of the cylinder. At slow RPMs this is not a bad assumption,
but as the speeds increase this efficiency of being able to draw in a full charge become a greater
factor. Also the volume of fuel is rather small in comparison to the air in the charge, so its volume
is ignored. Another assumption is that the charge is completely burnt, releasing all of its energy.
There are also the issues of thermodynamical efficiencies resulting for complex chemical processes,
and mechanical efficiencies resulting from the physical design of the engine. All of these different
efficiencies are grouped together into a total efficiency.

2.2.2 Model Theory and Predictions

The calculations dealing with the simple thermodynamic model is based around two related equations
of the horsepower (HP) and the torque. The HP is calculated in theory by calculating how much
fuel is burnt per minute and is expressed in the equation
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Where J/K, is a dimensional constant (0.707 BTU/sec in the foot/pound/sec unit system), M, is
the mass of air per unit time, f is the fuel to air ratio, Q. is the heat of combustion per unit mass of
fuel, and 7 is the total efficiency. In order to create a HP vs RPM graph that equation needs to be
modified by substituting in a RPM dependent function for the mass of air. By assuming that air is
an ideal gas, the equation can be modified to

J VP
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with the cylinder displacement V, air pressure P, Rgy;-/m is the universal air constant over the
molecular mas of air,and T is the absolute temperature. The factor of 2 x 60 takes into account that
this is a four cycle engine that fires on every other revolution and that to convert the RPM into
revolutions per second. The torque in general is the derivative of HP. On a HP vs RPM graph the



torque for a given RPM can be calculated with the HP at that RPM by the equation

Torque =

HP x 5252
RPM 3)

Using these simple equations and the values listed in the table, a graph of the Hp and Torque vs

RPM can be produced.

variable

value

K,/
Bair/m

U

0.707 BTU /sec

53.3 ft Ibf/degF
0.005729 ft3

530degR

212 Ibf/ ft2

gasoline .6

E85 .12

gasoline 20460 Btu/lbm
E85 13932 Btu/lbm

Table 1: Equation variable values

Predicted HP (air cycle w/gasoline)

—50% eff - 18.25 ft Ibs

—40% eff 14.6 ft [bs

30% eff 10.95 ft Ibs
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21% eff 7.7 ft Ibs
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Figure 2: Air Cycle Predictions



In plot 2 there are a set of data points obtained from the engine manufacture as measured HP
values. This indicates that the total efficiency of the engine is approximately 22%. [1]
2.3 Problems With the Air Cycle and more Advanced Models

Obviously the air cycle is a very basic approximation. The first indication of an issue is that it
produces a linear HP plot. In a measured HP curve there is a maximum value and the plot curves
over as seen in 3. This is due to the volumetric efficiency playing a larger role at higher RPMs.
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Figure 3: Manufacturer’s Measured HP Curve

The air cycle also assumes a very simplistic view of the chemical process of combustion. More
advanced models known as the fuel-air cycle or the actual cycle take into account those complexities
such as chemical equilibriums and traveling flame fronts. Unfortunately, incorporating those issues
into a working model is not an easy process. Either the model can use large amounts of empirical
data, or it can use rather complex mathematical formulas to compute those values. Either of these
methods are beyond the scope of this initial study, and may be considered in the future.

2.4 Basic Data from Kart

2.4.1 Data Gathering and Analysis

In any research area theoretical calculations are good, but they mean nothing without experimental
confirmations. Unfortunately access to a small engine dynamometer was unavailable. Instead the
on-board computer system installed on the kart itself was used. The computer is the Alfano Astro



Chronometric System that measure the head temperature, lap times, engine RPM, wheel speed, and
latitudinal and longitudinal accelerations at a rate of ten hertz. The torque produced by the engine
is measured in relation to the longitudinal acceleration. This can be done by taking into account
that the acceleration is due to a force between the tired and the track surface, and that the force is
related to the torque of the engine through the gearing. This whole relationship can be expressed

in the equation
teethclutch

4
teethazie (4)

It might seem that the torque transfer through the clutch sprocket to the axle sprocket would be
dependent on the radius of the sprockets and not the teeth. However, as with all karts, a standardized
chain is being used which mean that the teeth per inch on all sprockets for the chain are the same.
This in turn means that the ratio of the sprockets’ radii is exactly proportional to the ratio of the
teeth. By using the same equation used previously to go between the HP and torque, the measured
HP can be determined. Figure 4 shows the highest measured torque and HP for each RPM that was
read. It is apparent that there is some what of a curve present but there is too much noise for it to
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Figure 4: Measured HP /torque

be useful. To deal with this the data was put through a 'binning’ program that separates the RPMs
into a range and then picks the greatest torque and HP from within each bin. The best results
shown in figure 5 were found by using a bin that had a 20 RPM width (referred to on the diagram as
delta). This measured data can be compared to the calculated data. This time the calculated data
was produced using the values for E85 as the kart was run on that fuel. These results are shown in
figure 6.

2.4.2 Issues with Current Data Recording Methods

While the calculated and the measured data is in at lest decent agreement, there are some issues
with the measured data. The first is dealing with the fact that while the kart is accelerating it may
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Figure 5: Measured HP /torque curves after the binning process.
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Figure 6: A comparison of the calculated and measured HP /torque curves using E85 fuel.

or may not be under maximum load. This is simply due to the fact that these measurements were
taken under race conditions where such things are not controlled. This effect is very apparent in the
figure ?? to explain why there is such a difference in HP /toque values for relatively close RPMs. The
second problem also stems from the fact that the measured data is recorded under race conditions
instead of on a dynamometer, and it has to do with the clutch installed on the kart. It is necessary
to use a clutch to allow the engine to idle while that kart is sitting still. This effects the measured



data in that the computer won’t record an acceleration, and hence any HP/toque data, until the
engine RPM is above the value needed to engage the clutch. In any of the three figures involving the
measured data, it can be seen that there is no data recorded before a little past 2000 RPM where
the clutch is set. This offset changes how the engine reacts to a load, and therefor changes the curve
in general.

3 Chassis Dynamics

3.1 Importance of Understanding the Chassis

Once the power of the kart is understood and is tuned, the next thing to look at is how the kart
handles in the corners. Many people say that how the kart handles and how the driver takes the
corners makes the biggest difference in how the kart performs. On most racing vehicles this involves
understanding the suspension system, but karts do not have a suspension. Instead they rely on the
chassis itself to flex and move in a way that is helpful in the corners. To understand the chassis on
a whole is a rather large task due to the fact that the chassis is a collection of tube elements that all
interact with each other as they flex. To begin to understand this, it is first necessary to understand
how a beam element flexes on its own.

3.2 Flexure of Beams

The first concept to understand in the flexure of beams is that of the bending moment. The bending
moment of a beam at a certain point is defined as the sum of the moments, or torques, to either the
left or right of the point with respect to that point. These can be due to either torques themselves
or from a force at a distance. The decision of whether to use the left or right forces is merely a
matter of convention and should not effect the outcome if the calculations are consistent. Figure 7
shows the simple case that is being analyzed here. The a load W is placed a distance D from the

F1 F2

Figure 7: Force diagram for the flexure of a beam.

left end, and two forces F1 and F2 are on the ends of a beam of length L. The position along the
beam is denoted by the variable x. With this situation the moment as a function of position needs
to be separated into two sections, one z < D and one x > D.These two moment equations are equal
valued at D and are shown in figure 8.



M=F2L-z)—W(D-2z) <D (5)

M=F2L-z) >D (6)
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Figure 8: Moment as a function of position.

From these moment equations the deflection of the beam can calculated. This is due to the fact
that the stress in the beam is related to the moment over the cross sectional inertia of the beam.
In turn the stress can be related to the deflection through young’s modulus E and will form the

equation o
2
y'() = 2 (7)
Solving this second order differential equation under certain boundary conditions will give the de-
flection [2]. In this study two sets of boundary conditions were explored relating to the two most
predominate modes of vibration of the beam. In each of those modes, two different differential equa-
tions need to be simultaneously solved for the two moment equations. This means that a total of
four boundary conditions need to be defined for each mode. The first set, shown shown in figure 77
A, is where the two ends are free to rotate around a fixed position, and that the beam is continuous
at D. These conditions can be represented in the equations
The second mode, shown in figure 7?7 B, has the boundary conditions that the one end is re-
stricted in both translation and rotation, and again the beam is continuous. These conditions can



y1(D) = yao(D) 9)
dyi(D)  dya(D)
i = di (10)

Figure 9: The two vibrational modes.

be represented as

0i(0) = 0 _ g ()
91(D) = g2(D) (12)
dg1(D) _ dg2(D)
de —  dz (13)

The solutions to these equations are
The interesting thing to note is that the largest displacement in mode 1 is not at the location of the
load. Also it is worthy noting that F5 is dependent on W in mode 1, and in mode 2 F3 is independent
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Figure 10: Mode 1 displacement of a beam under three different loads W.

of W. From these displacement calculations the spring constant, K, of the vibrational mode can be
calculated by plotting the force vs the displacement at the site of the load. Unfortunately at the
time of writing the calculations of the mode 2 K value are not complete and only mode 1 is plotted
in figure 11.
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Figure 11: Mode 1 spring constant.

4 Future Research

In the future this research will be continued to include the more complex cases and application of the
knowledge learned to the kart. The flexure equations will be used to calculate the resonate frequencies
of the beams, and how the beams respond to an off axis weight undergoing an acceleration. The
next step is to analyze the chassis as a whole. The method of finite element analysis will be needed
to be used for this complex system. Taking measurements on the chassis is a rather difficult task as
well. The only available means is to place accelerometers at strategic points on the chassis and see
if any discernible resonate oscillations. There is also the possibility of using a scale model to make
direct measurements.
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